Quiz 10 Summand
\#1) Is it possible for

$$
\nabla x \vec{F}=\langle y,-x, z\rangle ?
$$

Two very important identities (both directly proven nosing Clairauls)
$\operatorname{carl}\left(\right.$ gradient (any ${ }^{*}$ scalar. $\left.f(n)\right)=\overrightarrow{0}$

$$
\nabla x \nabla f
$$

-and -

$$
\begin{aligned}
& \operatorname{div}(\operatorname{curl}(\text { any vic field }))=0 \\
& \nabla \cdot(\nabla \times \vec{F})
\end{aligned}
$$

* nice (ie. sufficiently differentiable)

Sol 1

$$
\begin{aligned}
0=\nabla \cdot(\nabla \times \stackrel{\rightharpoonup}{F})=\nabla \cdot\left\langle y_{1}-x, z\right\rangle & =0+0+1 \\
& =1
\end{aligned}
$$

Contradiction.
So \vec{F} cannot exist.

1, What if the question was "is it possible for

$$
\nabla \times \vec{F}=\langle y,-y, z\rangle
$$

$$
\nabla \cdot\left\langle y_{1}-y_{1} z\right\rangle=0
$$

so the preceding argament doesn't work to conclude the zusmer is no
(Actually the zinswer is 'yes in this case, but that desin't follow frow what I've written so far)
\#3) Method 1 (calculus)

$$
\vec{r}(x, y)=\left\langle x, y, \frac{3}{4} \sqrt{x^{2}+y^{2}}\right\rangle
$$

parameter region $\quad \frac{3}{4} \sqrt{x^{2}+y^{2}} \leqslant 3$

Then compute

$$
\iint_{D}\left|\vec{r}_{x} x \vec{r}_{y}\right| d x d y
$$

(the $\mid \vec{r}_{x} \times \vec{r}_{y}$) turns on it to just be a constant, so the inkgral is easy).
Method 2 carlo calculus) Li only marks for cone

From here, can compote area of
\#2) $S: x^{2}+y^{2}+t^{2}=1$ outwards

$$
\iint_{S}(\nabla \times\langle-y, x, z\rangle) \cdot d \vec{S}
$$

Solution 1: Stokes (hinted @ by flux of a curl in porbden)

$$
0=\oint_{\substack{\text { bombay } \\ \text { of } S}}\left\langle\langle y ; x, z\rangle \cdot d \vec{r}=\iint_{S}(\nabla \times\langle-y, x, t\rangle) \cdot d \vec{S}\right.
$$

but the bandary of S is a single point
for "nothing", as people would jud t say S has no doinntay?

Solution 2: Drengunce The

$$
\begin{gathered}
\left.\left.\oiint_{S}(\nabla x\langle-y, x, z\rangle) \cdot d \vec{S}=\iiint_{\substack{\text { regin } \\
\text { end } \\
\text { by s }}} \nabla(\nabla x y) y, z, z\right\rangle\right) d V \\
\text { ie. } x^{2}+y^{2}+z^{2} \leq 1 \\
=\iiint_{x^{2} y^{2} t^{2} \leq 1} 0 d V=0
\end{gathered}
$$

If the problem were instead

$$
\left.\iint_{S}\left(\nabla x<\frac{-y}{x^{2}+y^{2}+z^{2}}<\frac{x}{x^{2}+y^{2}+z^{2}}<\frac{z}{x^{2}+y^{2}+z^{2}}\right\rangle\right) d \vec{S}
$$

the answer would still be 0 leg by sol 1)
tut Sol: 2 is no logger valid.

